ত্রিকোণমিতিক ফাংশনের পর্যায়

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | NCTB BOOK
1.5k

ত্রিকোণমিতিক ফাংশনের পর্যায় (Period of Trigonometric Functions) বলতে এমন একটি ধ্রুবক মানকে বোঝায়, যার জন্য ফাংশনের মান পুনরাবৃত্ত হয়। অর্থাৎ, ত্রিকোণমিতিক ফাংশনগুলো একটি নির্দিষ্ট সময় পরপর তাদের মান পুনরাবৃত্ত করে।


প্রধান ত্রিকোণমিতিক ফাংশনগুলোর পর্যায়

১. সাইন (sin) এবং কোসাইন (cos) ফাংশনের পর্যায়:

  • \( \sin(x) \) এবং \( \cos(x) \) ফাংশনের পর্যায় হলো \( 2\pi \)।
  • অর্থাৎ, \( \sin(x + 2\pi) = \sin(x) \) এবং \( \cos(x + 2\pi) = \cos(x) \)।
  • এই ফাংশনগুলোর মান প্রতি \( 2\pi \) রেডিয়ানে পুনরাবৃত্ত হয়।

২. ট্যানজেন্ট (tan) এবং কোট্যানজেন্ট (cot) ফাংশনের পর্যায়:

  • \( \tan(x) \) এবং \( \cot(x) \) ফাংশনের পর্যায় হলো \( \pi \)।
  • অর্থাৎ, \( \tan(x + \pi) = \tan(x) \) এবং \( \cot(x + \pi) = \cot(x) \)।
  • এই ফাংশনগুলোর মান প্রতি \( \pi \) রেডিয়ানে পুনরাবৃত্ত হয়।

৩. সেক্যান্ট (sec) এবং কোসেক্যান্ট (csc) ফাংশনের পর্যায়:

  • \( \sec(x) \) এবং \( \csc(x) \) ফাংশনের পর্যায় হলো \( 2\pi \)।
  • অর্থাৎ, \( \sec(x + 2\pi) = \sec(x) \) এবং \( \csc(x + 2\pi) = \csc(x) \)।
  • এই ফাংশনগুলোর মান প্রতি \( 2\pi \) রেডিয়ানে পুনরাবৃত্ত হয়।

সংক্ষেপে:

  • \( \sin(x) \) ও \( \cos(x) \) এর পর্যায়: \( 2\pi \)
  • \( \tan(x) \) ও \( \cot(x) \) এর পর্যায়: \( \pi \)
  • \( \sec(x) \) ও \( \csc(x) \) এর পর্যায়: \( 2\pi \)

এই পর্যায় গুণফলের মাধ্যমে ত্রিকোণমিতিক ফাংশনের গ্রাফ বা মানগুলোকে প্রাকৃতিকভাবে পুনরাবৃত্তি করা যায়, যা গাণিতিক সমস্যার সমাধানে এবং বাস্তব জীবনের চক্রাকার ঘটনাগুলোতে ব্যবহার করা হয়।

Promotion
NEW SATT AI এখন আপনাকে সাহায্য করতে পারে।

Are you sure to start over?

Loading...